欢迎访问 懂农资网!权威农资专家解读,让你更懂农资!

百菌清毛细管柱 百菌清杀细菌吗

2026-01-11 投稿人 : 懂农资网 围观 : 907 次

此篇农资内容会给广大网友分析一下“百菌清毛细管柱”的内容进行剖析,期望对广大农资人有所收获,关注下本站哈!

百菌清毛细管柱 百菌清杀细菌吗

百菌清毛细管柱——解决细菌检测难题的利器

近年来,随着人们对食品卫生和环境卫生的要求越来越高,对细菌检测的需求也越来越大。而百菌清毛细管柱作为一种快速、准确、可靠的细菌检测工具,受到越来越多人的关注和青睐。

什么是毛细管柱?

毛细管柱,顾名思义,就是一种细长的管子,其内部充满了一种特殊的涂层,可以用来分离和检测样品中的各种成分。

毛细管柱在化学、生物、医学等领域中都有着广泛的应用。在食品安全领域,毛细管柱常被用来检测食品中的各种有害物质,如重金属、农药残留等,以及各种微生物,如细菌、霉菌等。

为什么需要细菌检测?

细菌是一种微生物,它们存在于自然界的各个角落中。有些细菌对人体有益,如肠道菌群中的某些细菌可以帮助我们消化食物、合成维生素等。但有些细菌却是有害的,它们可以引起各种***,如食物中的沙门氏菌、金***葡萄球菌等。

对食品和环境中的细菌进行检测,可以及早发现和控制细菌污染,保障人类健康和生态环境。

百菌清毛细管柱的优势

相比于传统的细菌检测方法,如培养法、生化法等,百菌清毛细管柱具有以下优势:

百菌清毛细管柱 百菌清杀细菌吗

快速

百菌清毛细管柱可以在短时间内完成细菌检测,通常只需要几个小时,比传统方法快得多。

准确

百菌清毛细管柱采用先进的分离和检测技术,可以提高检测的准确性,避免误判和漏检。

可靠

百菌清毛细管柱经过多次验证和检测,其检测结果具有高度的可靠性和可重复性。

操作简单

百菌清毛细管柱的操作非常简单,无需专业的技能和设备,只需要按照说明书进行操作即可。

适用范围广

百菌清毛细管柱适用于各种食品和环境样品的细菌检测,如肉类、水产品、蔬菜、水源等。

如何选择合适的百菌清毛细管柱?

根据不同的检测需求和样品类型,可以选择不同类型的百菌清毛细管柱。一般来说,可根据以下几个方面进行选择:

样品类型

不同的样品类型需要选择不同的毛细管柱,如肉类、水产品、蔬菜等样品需要选择相应的毛细管柱。

百菌清毛细管柱 百菌清杀细菌吗

检测方法

根据不同的检测方法,可以选择不同类型的毛细管柱,如PCR法、荧光定量PCR法等。

检测标准

不同的检测标准需要选择不同的毛细管柱,如国家标准、欧盟标准、美国FDA标准等。

如何正确使用百菌清毛细管柱?

使用百菌清毛细管柱前,需要注意以下几点:

样品处理

样品处理是细菌检测的重要步骤,需要根据不同的样品类型进行不同的处理,如杀菌、提取等。

操作规范

使用百菌清毛细管柱时,需要按照说明书进行操作,避免操作不当导致误判和漏检。

设备准备

使用百菌清毛细管柱需要准备相应的设备和试剂,如离心机、显微镜、PCR仪等。

百菌清毛细管柱作为一种快速、准确、可靠的细菌检测工具,已经在食品安全和环境卫生领域得到了广泛应用。在未来,随着人们对食品和环境卫生要求的不断提高,百菌清毛细管柱将会发挥更加重要的作用。

百菌清毛细管柱 百菌清杀细菌吗

相关拓展:

问:生产无公害果品允许使用哪些植物生长调节剂1蔬菜中常用植物生长调节剂的种类
  蔬菜生产中常用的植物生长调节剂主要有2,4-二氯苯氧乙酸(2,4-D)、萘乙酸(NAA)、乙烯利、赤霉素、青鲜素(马来酰肼,MH)、多效唑等。
  植物生长调节剂在蔬菜生产中的作用各不相同:2,4-D成本较低、应用较为广泛,能促进坐果、减少落花落果、产生无籽果实、减少脱帮等;萘乙酸促进扦插生根、果实发育、抽薹开花等;乙烯利促进果实成熟和瓜类蔬菜雌花的形成;赤霉素促进茎叶生长、破除休眠、促进坐果等;青鲜素则用于防止洋葱、大蒜及弯世知马铃薯贮藏期间的萌芽、抽薹;多效唑主要用于防止幼苗徒长、促使植株矮化、根系发达、叶色浓绿等。
  2蔬菜中常用植物生长调节剂的毒性、残留限量标准及残留现状
  我国1997年颁布实施、2026年修订的《农药管理条例》将植物生长调节剂作为农药而进行统一管理。农药按口服半致死量(每千克体重的半致死量,LD50)分为6类:特剧毒、剧毒、高毒、中等毒、低毒和微毒。植物生长调节剂是一类能够调节植物生长发育的农药,不以杀伤有害生物为目的,所以其毒性一般为低毒或微毒。植物生长调节剂的残留,是指其毒性及有效成分存在于植物体内和土壤中的量。正常使用情况下,植物生长调节剂进入蔬菜体内会随着新陈代谢的进行逐渐降解,药效慢慢消失,在蔬菜体内的残留量很低,即使有微量的残留,在烹饪过程中也会遭到不同程度的破坏。残留在土壤中的植物生长调节剂会因雨水的淋溶、化合物的降解、微生物的分解以及作物种植或其他方面的作用而被分解,并随着时间的推移向深土层转移,所以,在蔬菜生产中正常使用植物生长调节荆,其残留的毒性微乎其微,对蔬菜、人畜、土壤不会产生危害。但植物生长调节剂毕竟属于农药,除赤霉素外,绝大多数是化学合成的,或多或少都有一定的毒性,再加上目前我国蔬菜生产中滥用植物生长调节剂的现象比较严重,所以,有必要了解蔬菜中常用植物生长调节剂的毒性、残留限量标准及残留现状。
  2.12,4-D
  属于低毒农药,大白鼠口服LD50为500mg•kg-1;小鼠长期暴露在2,4-D的环境中会造成骨骼畸形,致病率和死亡率增加;每天***大白鼠21.5mg•kg-1的2,4-D,未发现***,没有致癌性。2,4-D具有急性神经毒性,对皮肤和眼睛有刺激作用,吸入或接触后,其急性毒性作用主要表现为神经性毒性;慢性毒性作用表现为对***、肝、肾的毒性及抑制某些酶的活力,抑制某些蛋白质的合成。动物胚胎学研究还未有直接证据证明其对人的生殖功能有影响。
  残留限量标准:国外对2,4-D的残留限量规定较为严格,国际食品法典委员会(CAC)标准规定25种农产品中2,4-D的残留限量范围为0.01-400mg•kg-1。我国强制性国家标准规定蔬菜中返弯2,4-D的最高残留限量为0.2mg•kg-1。
  残留现状举例:以凝胶渗透色谱-气相色谱法测定豆芽中2,4-D的残留量,通过对绿豆芽、黄豆芽等63份样品的分析测试,在4份样品中检出2,4-D,含量分别为0.007、0.008、0.009、0.004mg•kg-1,均低于我国标准。用浓度为20mg•kg-1的2,4-D处理柠檬1d后,残留浓度降低为0.1mg•kg-1,低于美国标准(美国规定2,4-D在苹果、柑橘、梨树等果树上的残留量不超过5mg•kg-1)。
  2.2NAA
  属于低毒农药,大白鼠急性口服LD50为1000~5900mg•kg-1。对人的眼睛、皮肤、粘膜和上呼吸道有刺激作用,吸入后可引起咳嗽、喘息、喉炎、气短、头痛、恶心、呕吐;通过食道引起中毒,对肝、肾造成损害。
  残留限量标准:日本规定蔬菜中NAA的最大残留限量为0.1mg•kg-1,我国对NAA的残留量尚无安全使用国家标准。
  残留现状举例:以毛细管柱气相色谱法测定芦笋罐头、蘑菇罐头中的NAA残留量,结果均未检出(检出限为0.05mg•kg-1),低于日本标准。
  2.3乙烯利
  属于低毒农药,大白鼠急性口服LD50为4000mg•kg-1,小白鼠急性口服LD50为4229mg•kg-1。乙烯利能导致小鼠体细胞、生殖细胞遗传损伤,使小鼠骨髓细胞微核率和雄性生殖细胞畸形率提高,干扰***正常生成和成熟过程,导致小鼠体细胞染色体畸变和生殖细胞基因突变。乙烯利对人类具有潜在的诱癌、致畸及其他多方面的危险,如1997年5月,在47例食用西瓜发生食物中毒的报告中发现,埋消乙烯利潜伏20~40min后即出现头晕、头痛、视力模糊、口唇舌根麻木、胸闷、心悸、多汗、恶心、呕吐、腹痛腹泻等症状;乙烯利对皮肤有刺激作用,1980~1986年在美国加利福尼亚发现4例乙烯利对皮肤刺激症状;过量乙烯利还可加速衰老,腐蚀消化道,对大脑和肾脏也有一定的损害。
  残留限量标准:近年来,国外对蔬菜中乙烯利的残留量提出了严格的限量要求:美国规定乙烯利在番茄上的残留量不超过2mg•kg-1,黄瓜不超过0.1mg•kg-1;新西兰在番茄上的限量为1mg•kg-1;日本对我国输日农产品新的限量规定番茄为2mg•kg-1。国际上对乙烯利的最高允许残留量还没有统一规定,我国规定番茄上乙烯利的最高残留限量为2mg•kg-1。
  残留现状举例:乙烯利在碱性介质下分解为乙烯蒸发,遇热也易分解,如提取经乙烯利催熟的菠萝汁液,70℃高温加热2h,汁液中的乙烯利完全分解。乙烯利的残留时间较短,只有几天,一般在收获前3d停止使用即可。刘淑艳等对沈阳市售水果中乙烯利残留量调查发现,50份水果样品中未检出的有4份(检出限为0.030mg•kg-1),检出46份,其中45份样品浓度在0.030~1.030mg•kg-1之间,低于我国标准(我国规定亚热带水果中乙烯利的最高残留限量为2mg•kg-1,苹果为5mg•kg-1,樱桃为l0mg•kg-1)。
  2.4赤霉素
  属于微毒农药,动物急性毒性试验基本无毒性反应,小鼠静脉注射LD50大于6300mg•kg-1,口服LD50大于mg•kg-1的大剂量试验无毒性反应,小鼠致癌试验为阴性。但有试验发现,赤霉素可影响机体的内分泌系统,受试动物的甲状腺、卵巢、肾上腺等内分泌腺重量明显增加,使得动物某些激素水平发生改变,影响动物的生长发育,甚至发生癌变。
  残留限量标准:美国、日本等国规定蔬菜中赤霉素最高残留限量为0.2mg•kg-1。我国目前还没有相关的国家标准。
  残留现状举例:赤霉素遇碱易分解,残留期较短。陈小鹏等以山东省农业科学院蔬菜研究所试验田的鲁黄瓜9号为试材,用高效液相色谱法测定成熟期瓜条中的赤霉素含量为0.00242mg•kg-1,低于美国、日本规定的最高限量。赤霉素处理柠檬和脐橙7d后,果肉中无残留(美国规定赤霉素在柑橘、甘蔗上的残留量不超过0.15mg•kg-1)。梁沛等用固相萃取/高效液相色谱串联质谱法测定草莓和苹果中的赤霉素含量分别为0.0125和0.0326mg•kg-1,低于美国、日本规定的赤霉素在蔬菜中的残留限量标准。
  2.5青鲜素
  属于低毒农药,大白鼠急性口服LD50为5000mg•kg-1。英国出版的《植物生长调节剂的潜力和应用》一书中明确指出:在2a内以5000mg•kg-1的青鲜素饲喂大白鼠无毒性反应,无致癌现象。而美国粮食药物部门则认为青鲜素可能是致癌物,因为它能引起老鼠的染色体断裂和畸变。据Epstein等(1968年)报道,对幼鼠皮下注射青鲜素,在生命的第1天注入0.5mg可引致死亡;生命最初3周,总注射量达55mg引致肝瘤发生。用青鲜素对老鼠进行长期致癌性的研究,饲料中剂量高达和2000mg•kg-1时,雌鼠的尿蛋白增加、生长受抑。1977年美国农业环境质量研究部门对青鲜素的代谢和毒性进行了全面研究,指出青鲜素对动植物都有致突变、致癌作用,但尚未发现对人类有这种作用。又有报道认为青鲜素不会使人不适,对哺乳动物组织无明显影响。
  残留限量标准:美国环境保护局规定青鲜素在马铃薯和洋葱中的最高残留量分别为50和15mg•kg-1;加拿大规定青鲜素在胡萝卜、洋葱、萝卜、甜菜中的最高残留量分别为30、15、30、30mg•kg-1;目前我国对青鲜素的残留标准仍未拟出。
  残留现状举例:青鲜素的残留期为1~2个月,中国科学院植物生理研究所喷施4000mg•kg-1青鲜素抑制甜菜抽薹,1个月后收获的甜菜块根中青鲜素的残留量不超过2mg•kg-1,低于加拿大标准。用氘作为标记,在盛花后用1000mg•kg-1青鲜素喷施荔枝,处理57d后果实成熟时,果肉中无残留。
  2.6多效唑
  属于低毒农药,大白鼠急性口服LD50为l500mg-1;高剂量的多效唑对动物雄性***官有损伤,子代体重和繁殖指数降低、肝脏受损,可能是致癌物质,应慎用;多效唑粉剂对皮肤和眼睛有轻微至中等的刺激作用。
  残留限量标准:CAC标准和欧盟委员会都未规定多效唑的限量标准;日本、新西兰、韩国和澳大利亚等国规定多效唑的最高残留限量为0.5mg•kg-1;我国规定多效唑在马铃薯上的最高残留量为50mg•kg-1、洋葱为15mg•k-1、菜籽油等为0.5mg•kg-1。
  残留现状举例:多效唑不易被生物降解,在土壤中的残留期较长,多达数月,瑞典等国已禁用。但多效唑的残留量会随着处理时间的提前和施用次数的减少而降低,喷药间隔60d后收获的蔬菜对人、畜是安全的。青豆始花期喷施多效唑150~200mg•kg-1,35~60d后收获,青豆中的残留量仅为0.007~0.053mg•kg-1;油菜2~3叶期喷施100~300mg•L-1多效唑,2l0d后收获的油菜籽中未检出多效唑在直播春油菜3叶期叶面喷施100mg•L-1多效唑,间隔60d后根、茎均未检出(检出限为0.001mg•L-1),籽粒中残留量为0.0365mg•L-1,低于我国标准。
  3减少蔬菜中植物生长调节剂残留量的方法
  植物生长调节剂的毒性较低,在蔬菜生产中正常使用不会对蔬菜、人畜和环境造成危害,但不同植物生长调节剂的毒性、残留限量标准、残效期各不相同,过量使用植物生长调节剂造成危害的现象时有发生。所以,减少蔬菜中植物生长调节剂的残留量成为一个不容忽视的问题,减少残留量主要有以下方法。
  3.1使用生物农药
  蔬菜生产中使用生物农药是开发植物生长调节剂的主要方向,如由赤霉菌分泌的毒性极低的赤霉素以及存在于植物蜡、蜂蜡、果皮蜡、糠蜡中的三十烷醇,相对于其他植物生长调节剂来说比较安全。这些从自然源中提取的天然植物生长调节剂对于生产绿色食品、实现农业可持续发展具有重要意义。
  3.2选用分解快、残留期短、毒性低的植物生长调节剂
  随着人们对蔬菜质量安全要求的提高及对环境保护的重视,高效、残留期短、无毒(或微毒)、广谱的植物生长调节剂越来越受到人们的关注,如残留期只有几天的乙烯利在蔬菜生产中得到了广泛的应用。在相同效果的前提下,应选用残效期短、毒性低的植物生长调节剂,如培育油菜壮苗,可用烯效唑代替多效唑,烯效唑的生理功能与多效唑相同,但烯效唑活性高、使用范围广、使用量比多效唑低,且烯效唑残留期短、对人畜、环境较为安全。
  3.3掌握正确的施用浓度、次数和时期
  植物生长调节剂一般使用浓度较低,在不影响生物效应的前提下应尽量减少用量,浓度过高不仅使蔬菜作物产生药害,还会使蔬菜、土壤中的残留量增大。同一植物生长调节剂对不同蔬菜或同一蔬菜的不同品种使用浓度不同,故使用前最好进行浓度试验,以确定适宜的使用浓度。还应注意制定安全间隔期,减少喷施次数,严禁在临近收获期和采收后使用毒性较强或残效期较长的植物生长调节剂,以减少蔬菜中的残留量。
  3.4提高药效,降低用量
  将表面活性剂(吐温、肥皂等)与植物生长调节剂混合施用,可降低植物生长调节剂的表面张力及受雨水冲刷的程度、增加叶片的吸收量,也可减少植物生长调节剂的用量。将不同的植物生长调节剂混用,通过相加或相乘的复合效应减少用量而产生相同的效果,如多效唑与乙烯利混合喷施蔬菜幼苗,可使秧苗矮化,并减少了多效唑的用量。问:跪求实验方案急。关于植物小分子多肽的提取分离和分析 最好用到高效液相提取的多肽类化合物广泛存在于自然界中,其中对具有一定生物活性的多肽的研究,一直是药物开发的一个主要方向。生物体内已知的活性多肽主要是从内分泌腺组织器官、分泌细胞和***中产生或获得的,生命活动中的细胞分化、神经激素递质调节、***病变、免疫调节等均与活性多肽密切相关。随着现代科技的飞速发展,从天然产物中获得肽类物质的手段也不断得到提高。一些新方法、新思路的应用。不断有新的肽类物质被发现应用于防病治病之中。本文介绍了近几年肽类物质分离、分析的主要方法研究进展。
1 分离方法
采取何种分离纯化方法要由所提取的组织材料、所要提取物质的性质决定。对蛋白质、多肽提取分离常用的方法包括:盐析法、超滤法、凝胶过滤法、等电点沉淀法、离子交换层析、亲和层析、吸附层析、逆流分溶、酶解法等。这些方法常常组合到一起对特定的物质进行分离纯化,同旅老友时上述这些方法也是蛋白、多肽类物质分析中常用的手段,如层析、叫泳等。
1.1 高效液相色谱(HPLC)
HPLC的出现为肽类物质的分离提供了有利的方法手段,因为蛋白质、多肽的HPLC应用与其它化合物相比,在适宜的色谱条件下不仅可以在短时间内完成分离目的,更重要的是HPLC能在制备规模上生产具有生物活性的多肽。因此在寻找多肽类物质分离制备的最佳条件上,不少学者做了大量的工作。如何保持多肽活性、如何选择固定相材料、洗脱液种类、如何分析测定都是目前研究的内容。
1.1.1 反相高效液相色谱(RP-HPLC)
结果与保留值之间的关系:利用RP-HPLC分离多肽首先得确定不同结构的多肽在柱上的保留情况。为了获得一系列的保留系数,Wilce等利用多线性回归方法对2106种肽的保留性质与结构进行分析,得出了不同氨基酸组成对保留系数影响的关系,其中极性氨基酸残基在2~20氨基酸组成的肽中,可减少在柱上的保留时间;在10~60氨基酸组成的肽中,非极性氨基酸较多也可减少在柱上的保留时间,而含5~25个氨基酸的小肽中,非极性氨基酸增加可延长在柱上的保留时间。同时有不少文献报道了肽链长度、氨基酸组成、温度等条件对保留情况的影响,并利用计算机处理分析得到每种多肽的分离提取的最佳条件。
肽图分析(Peptide Mapping):肽图分析是根据蛋白质、多肽的分子量大小以及氨基酸组成特点,使用专一性较强的蛋白水解酶[一般未肽链内切酶(endopeptidase)]作用于特殊的肽链位点将多肽裂解成小片断,通过一定的含运分离检测手段形成特征性指纹图谱,肽图分析对多肽结构研究合特性鉴别具有重要意义。利用胰蛋白酶能特意性作用于Arg和Lys羧基端的肽链的性质,通过RP-HPLC法采用C18柱检测了重组人生长激素特征性胰肽图谱。同时胰岛素的肽图经V8酶专一裂解也制得,并可鉴别仅相差一个氨基酸***的不同种属来源的胰岛素。人类***坏死因子的单克隆抗体结构也应用酶解法及在线分析技术确定了肽图,便于鉴定分析。此项技拆槐术已经在新药开发中得到广泛应用。
1.1.2 疏水作用色谱(Hydrophobic interaction chromatogrphy,HIC)
HIC是利用多肽中含有疏水基因,可与固定相之间产生疏水作用而达到分离分析的目的,其比RP-GPLC具有较少使多肽变性的特点。利用GIC分离生产激素(GH)产品的结构与活性比EP-GPLC分离的要稳定,活性较稳定。Geng等利用HIC柱的低变性特点,将大肠杆菌表达出的经盐酸胍乙啶变性得到人重组干扰素-γ。通过HIC柱纯化、折叠出高生物活性的产品。不同人尿表皮生长因子(EGF)也利用HIC纯化到了,均具有良好的生物活性。HIC可将未经离子交换柱的样品纯化。而RP-HPLC则不能达到这一要求。
1.1.3 分子排阻色谱(Sizs-Exclusion chromatogrphy,SEC)
SEC是利用多肽分子大小、形状差异来分离纯化多肽物质,特别对一些较大的聚集态的分子更为方便,如人重组生长激素(hgH)的分离,不同结构、构型的GH在SEC柱上分离行为完全不同,从而可分离不同构型或在氨基酸序列上有微小差异的变异体,利用SEC研究修饰化的PEG的分离方法,此PEC具有半衰期长、作用强的特点。一些分子量较大的肽或蛋白均可利用此法分离分析。
1.1.4离子交换色谱(Iron-Exchange chromatography,IEXC)
IEXC可在中性条件下,利用多肽的带电性不同分离纯化具有生物活性的多肽。其可分为阳离子柱与阴离子柱两大类,还有一些新型树脂,如大孔型树脂、均孔型树脂、离子交换纤维素、葡聚糖凝胶、琼脂糖凝胶树脂等。在多肽类物质的分离分析研究中,对多肽的性质、洗脱剂、洗脱条件的研究较多,不同的多肽分离条件有所不同,特别是洗脱剂的离子强度、盐浓度等对纯化影响较大。Wu等报道利用离子交换柱层析法,探讨分离牛碳酸酐异构体和牛血清白蛋白、鸡血清白蛋白酶的提取条件,获得了有价值的数据供今后此类物质分离研究。
1.1.5膜蛋白色谱(Chromatography of Membrane Protein,CMP)
CMP+分离强蔬水性蛋白、多肽混合物的层析系统,一般有去垢剂(如SDS)溶解膜蛋白后形成SDS-融膜蛋白,并由羟基磷灰石为固定相的柱子分离纯化。羟基磷灰石柱具有阴离子磷酸基团(P-端),又具有阳离子钙(C-端),与固定相结合主要决定于膜蛋白的大小、SDS结合量有关。利用原子散射法研究cAMP的分离机制发现,样品与SDS结合后在离子交换柱上存在SDS分子、带电荷氨基酸与固定相中带电离子间的交换,从而达到分级分离的目的。
1.1.6高效置换色谱(High-Performance Displacement Chromatography,HPDC)
HPDC是利用小分子高效置换剂来交换色谱柱上的样品,从而达到分离的目的。它具有分离组分含量较少成分的特性。利用HPDC鉴定分离了低于总量1%组分的活性人重组生长激素(rHG )。在研究非毒***换剂时Jayarama发现硫酸化葡萄糖(Detran Sulfate,DS)是对β乳球蛋白A和B的良好置换剂,一般DS的相对分子质量为1×104和4×104最宜。研究表明置换剂的相对分子质量越低,越易于与固定相结合,因此在分离相对分子质量小的多肽时,需要更小的置换剂才能将其置换纯化出来。
1.1.7 灌注层析(Perfusion Chromatography,PC)
PC是一种基于分子筛原理与高速流动的流动相的层析分离方法,固定相孔径大小及流动相速度直接影响分离效果。试验证明其在生产、制备过程中具有低投入、高产出的特性。目前市场上可供应的PC固定相种类较多,适合于不同分子量的多肽分离使用。
1.2 亲和层析(Affinity Chromatography,AC)
AC是利用连接在固定相基质上的配基与可以和其特异性产生作用的配体之间的特异亲和性而分离物质的层析方法。自1968年Cuatrecasas提出亲和层析概念以来,在寻找特异亲和作用物质上发现了许多组合,如抗原-抗体、酶-催化底物、凝集素-多糖、寡核苷酸与其互补链等等。对多肽类物质分离目前主要应用其单抗或生物模拟配基与其亲和,这些配基由天然的,也有根据其结构人工合成的。Patel等人利用一系列亲和柱分离纯化到了组织血浆纤维蛋白酶原激活剂蛋白多肽。
固定金属亲和层析(Immobiliz*** Metal Affinity Chromatography.LMAC)是近年来发展起来的一种亲和方法。其固定相基质上鳌合了一些金属离子,如Cu2+、Ni2+、Fe3+等,此柱可通过配为键鳌合侧链含有Lys、Met、Asp、Arg、Tyr、Glu和His的多肽,特别是肽序列中含有His-X-X-X-His的结构最易结合到金属离子亲和柱上,纯化效果较好。其中胰岛素样生长因子(Insylin Like Growth Factor,IGF)、二氢叶还原酶融合蛋白等均用此方法分离到纯度较高的产品。
Chaiken等人报道了另一种亲和层析方法,利用反义DNA表达产生,其与正链DNA表达产生的肽或蛋白具有一定的亲和性,如Arg加压素受体复合物,已用此法分离得到。DNA与蛋白、多肽复合物之间的作用也是生物亲和中常用的方法。将人工合成的寡核苷酸结合在固定相基质上,将样品蛋白或多肽从柱中流过,与之结合可达到分离特定结构多肽的目的。
1.3 毛细管电泳(Capillary electrophoresis,CE)--分离分析方法
CE是在传统的电泳技术基础上于本世纪60年代末由Hjerten发明的,其利用小的毛细管代替传统的大电泳槽,使电泳效率提高了几十倍。此技术从80年代以来发展迅速,是生物化学分析工作者与生化学家分离、定性多肽与蛋白类物质的有利工具。CE根据应用原理不同可分为以下几种;毛细管区带电泳Capillary Zone electrophoresis,CZE)、毛细管等电聚焦电泳(Capillary Isoeletric Focusing,CIEF)毛细管凝胶电泳(CapillaryGelElectrophoresis,CGE)和胶束电动毛细管层析(Micellar Electokinetic Electrophoresis Chromatorgraphy,MECC)等。
1.3.1 毛细管区带电泳(Capillary Zone Electrophoresis,CZE)
CZE分离多肽类物质主要是依据不同组分中的化合物所带电性决定,比传统凝胶电泳更准确。目前存在于CZE分离分析多肽物质的主要问题是天然蛋白或肽易与毛细管硅胶柱上的硅醇发生反应,影响峰形与电泳时间,针对这些问题不少学者做了大量实验进行改进,如调节电池泳液的PH值,使与硅醇反应的极性基团减少;改进毛细管柱材料的组成,针对多肽性质的不同采取不同的CZE方法研究分离5个含9个氨基酸残基的小肽,确定了小肽分析的基本条件,即在低PH条件下,缓冲液中含有一定浓度的金属离子如Zn2+等,此时分离速度快而且准确。
1.3.2细管等电聚电泳(Capillary Isleletric Focusing,CIEF)
由于不同的蛋白、多肽的等电点(PI)不同,因此在具有不同pH梯度的电泳槽中,其可在等电点pH条件下聚集沉淀下来,而与其他肽类分离开来。CIEF在分离、分析混合多肽物质中应用不多,主要应用与不同来源的多肽异构体之间的分离,如对rHG不同异构体分离。由于在CIEF柱表面覆盖物的不稳定性限制了此法的广泛应用。
1.3. 3毛细管凝胶电泳 (Capillary Gel Electrophoresis,CGE)
CGE是基于分子筛原理,经十二烷基磺酸钠(SDS)处理的蛋白或多肽在电泳过程中主要靠分子形状、分子量不同而分离。目前,又有一种非交联欢、线性、疏水多聚凝胶柱被用于多肽物质的分离分析,此电泳法适于含疏水侧链较多的肽分离,这种凝胶易于灌注,使用寿命长,性质较为稳定。
1.3.4胶束电动毛细管层析(Micellar Electrokinetic Electorphoresis Chromatography, MECC)
MECC的原理是在电泳液中加入表面活性剂,如SDS,使一些中性分子带相同电荷分子得以分离。特别对一些小分子肽,阴离子、阳离子表面活性剂的应用都可使之形成带有一定电荷的胶束,从而得到很好的分离效果。有文献报道在电解液中加入环糊精等物质,可使用权含疏水结构组分的多肽选择性与环糊精的环孔作用,从而利用疏水作用使多肽得到分离。
1.4多肽蛋白质分离工程的系统应用
以上提到的分离多肽的技术在实际应用过程中多相互结合,根据分离多肽性质的不同,采用不同的分离手段。特别是后基因组时代,对于蛋白质组深入的研究,人们对于分离多肽及蛋白质的手段不断改进,综合利用了蛋白质和多肽的各种性质,采用包括前面提到的常规蛋白多肽提取方法,同时利用了高效液相色谱,毛细管电泳,2-D电泳等手段分离得到细胞或组织中尽可能多的蛋白多肽。在蛋白质组学研究中系统应用蛋白和多肽分离鉴定的技术在此研究中即是分离手段也是分析方法之一。特别是以下提到的质谱技术的发展,大大的提高了蛋白多肽类物质的分析鉴定的效率。
2 分析方法
2.1 质谱分析(Mass Spectrometry, MS)
MS在蛋白、多肽分析中已经得到了广泛应用,特别是在分离纯化后的在线分析中,MS的高敏性、快速性特别适合多肽物质分析鉴定。其中连续流快原子轰击质谱(Continuous-Flow Fast Atom Bombardment, cf-FAB)和电雾离子化质谱(Electrospray Ionization, EIS)是近几年发展起来的新方法。
2.1.1连续流快原子轰击质谱(Continuous-Flow Fast Atom Bombardment, cf-FAB)
cf-FAB是一种弱离子化技术,可将肽类或小分子量蛋白离子化成MH+或(M-H)形式。主要应用于肽类的分离检测,其具有中等分辨率,精确度大于+0.2amu,流速一般在0.5-1.5μl·Ml-1。在测定使流动相需加0.5%-10%基质如甘油和高有机溶剂成分,使样品在检测探针处达到敏感化。cf-FAB常与HPLC、CEZ等方法结合使用达分离分析的目的,许多多肽的cf-FAB分析方法已经建立,并得到很好的应用。如Hideaki等利用此法研究L-Pro、L-Ala的四肽化合物系列。证明L-Pro在保持小肽构相稳定性。连接分子方面具有重要意义。
2.1.2 电雾离子化质谱(Electrospray Ionozation,EIS)
EIS可产生多价离子化的蛋白或多肽,允许相对分子质量达1×105蛋白进行分析,分辨率在1500-2000amu。精确度在0.01%左右。EIS更适合相对分子质量大的蛋白质的在线分析,且需要气化或有机溶剂使样品敏感化。利用EIS与HPLC联合分离分析GH和血红蛋白均获成功,其也可与CEZ联合应用。
2.1.3 基质辅助激光解析/离子化-飞行时间质谱(Matrix-associat*** laser disso-ciation/ionization time of flight mass spectrmtry,MALDI-TOF MS)
MALDI-TOF是目前蛋白质鉴定中精确测定测定分子质量的手段,特别适合对混合蛋白多肽类物质的相对分子质量的测定,灵敏度和分辨率均较高。它是目前蛋白质组学研究的必备工具。同时结合液相色谱的联用技术可以高效率的鉴定多肽物质。特别是当各种原理的质谱技术串联应用时,不但可以得到多肽的相对分子质量信息,还可以测定它的序列结构,此项技术将在未来蛋白质组学研究中起到决定性作用。
2.2 核磁共振(Nuclear Magnetic resonance,NMR)
NMR因图谱信号的纯数字化、过度的重叠范围过宽(由于相对分子质量太大)核信号弱等原因,在蛋白、多肽物质的分析中应用一直不多。随着二维、三维以及四维NMR的应用,分子生物学、计算机处理技术的发展,使NMR逐渐成为此类物质分析的主要方法之一。NMR可用于确定氨基酸序列、定量混合物中的各组分组成含量等分析中。但要应用于蛋白质分析中仍有许多问题需要解决,例如,如何使分子量大的蛋白质有特定的形状而便于定量与定性分析,如何减少数据处理的时间问题等。这些问题多有不少学者在进行研究。虽然在蛋白质分析中应用较少,NMR在分析分子中含少于30个氨基酸的小肽时是非常有用的,可以克服上述蛋白质分析中的缺点而达到快速准确分析的目的。
2.3 其他
除上述方法之外,氨基酸组成分析、氨基酸序列分析、场解析质谱、IR、UV光谱、CD、圆而色谱、生物鉴定法、放射性同位素标记法及免疫学方法等都已应用于多肽类物质的结果鉴定、分析检测之中。
以上简要的介绍了近几年多肽物质分离、分析的常用方法及最新研究方向。随着科学技术水平的不断发展,会有许多更新的分离分析手段不断涌现,因此这一领域的研究具有广阔的前景。

应用SDS-PAGE显示小分子多肽
SDS-PAGE在分离、鉴定和纯化蛋白质方面有着广泛应用,其有效分离范围取决于聚丙烯酰胺的浓度和交联度,其孔径随着双丙烯酰胺与丙烯酰胺比率的增加而减小,比率接近于1:20时,孔径达到最小值。分子量低于10kD的小分子肽类,即使用较高浓度的聚丙烯酰胺凝胶的SDS-PAGE也不能完全分离,或是显不出色,或是显带较弱,带型弥散。且分子量越小,效果也越差。
为了能在SDS-PAGE上显示测定小分子量的多肽,通常采取两种方法:一是增加凝胶的浓度和交联度,在制胶时加入一些可以降低聚丙烯酰胺凝胶网限孔径的溶质分子,使用尿素、甘油或蔗糖等物质;二是选择缓冲液中的拖尾离子的种类和浓度以达到改善多肽的分离效果。
操作步骤
1.电泳缓冲液的配制如下表所示
缓冲液Tris
(mol/L)Tricine
(mol/L)pHSDS
(%)
阳极缓冲液
阴极缓冲液
胶缓冲液0.2
0.1
3.0—
0.1
—8.9*
8.25**
8.4*—
0.1
0.3
* 用HCl调pH
** pH约为8.25
2.丙烯酰胺贮存液的配制
单丙-双丙混合物单丙的百分数双丙的百分数
49.5% T, 3%C
49.5% T, 6%C48
46.51.5
3.0
T:丙烯酰胺的总浓度
C:交联度
3.胶的制备,与一般SDS-PAGE相似,按下表配制分离胶和浓缩胶
组 份分离胶
16% T,6%C浓缩胶
6% T,3%C
49.5% T, 3%C丙烯酰胺溶液(ml)
49.5% T, 6%C 丙烯酰胺溶液(ml)
胶缓冲液(ml)
脲(g)[甘油(ml)]
水(ml)
10%过硫酸铵(μl)
TEM***(μl)
总体积(ml)—
3.3
3.3
3.6[2.4]
1
40
4.0
10.040.48

1.00

1.50
25
2.5
3.03
4.样品缓冲液
4% SDS
12%甘油
50mmol/L Tris
2%巯基乙醇
0.01% Serva blue
多肽样品与样品缓冲液混合沸煮2min(或40℃温浴30min)。
5.将灌胶的玻璃板固定在电泳装置上,用1%琼脂糖封边,倒入阴极缓冲液,依次加样。
6.将电泳装置放入电泳槽内,倒入阳极缓冲液,将正负极与电泳仪相接,恒电压50~60V,待指示剂进入分离胶后,电压可升至70~90V,恒压约3h待指示剂走出凝胶下缘停止电泳。
7.染色、脱色及胶的保存同SDS-PAGE