百菌清gc会降解吗 百菌清会产生药害吗
2024-07-15 投稿人 : 懂农资网 围观 : 6294 次
百菌清GC是一种常用的消毒剂,广泛应用于医疗、卫生、饮食等领域。很多人担心使用百菌清GC会对环境产生不良影响,因为其主要成分为氯化二甲基异噻唑啉铵盐,这种化合物是否会降解成更有害的物质呢?
经过多年的研究和实践,科学家们发现,百菌清GC在正常使用情况下不会对环境造成任何危害。这是因为,百菌清GC的主要成分氯化二甲基异噻唑啉铵盐在水中会迅速分解,生成一系列无害的化合物,如氯化亚甲基异噻唑啉铵盐、氯化甲基异噻唑啉铵盐等。
百菌清GC还具有良好的生物降解性。一旦进入生态系统,百菌清GC会被微生物分解,转化为二甲基异噻唑啉等物质,最终被分解为二氧化碳和水。百菌清GC的使用不会对环境造成长期的污染和危害。
如果百菌清GC的使用不当,就有可能对环境产生不良影响。比如,将百菌清GC倾倒到地下水或河流中,就会对水生生物造成毒害。在使用百菌清GC时,应该严格按照说明书的要求进行操作,不要将其倾倒到自然环境中。
百菌清GC不会对环境造成危害,其主要成分氯化二甲基异噻唑啉铵盐具有良好的生物降解性。使用者应该注意正确使用方法,避免将百菌清GC倾倒到自然环境中。
相关拓展:
问:常用的农药残留分析的步骤有哪些
常用的农药残留分析样品前处理—提取方法索氏提取法;加速溶剂提取法;微波加热提取法;超临界流体提取法;固相微提取法;浸渍、漂洗法;匀浆法;消化法;振荡法;超声波提取法;吸附法.常用的农药残留分析样品前处理——提取方法
内容摘要:索氏提取法加上用分液漏斗的液-液分配技术,长期以来是分析家用来从样品基体中分离靶标分析物的主要技术,将样本放在索氏提取器套管中,在圆底烧瓶中加入提取剂,加热连续提取数小时。现代提取工艺的其他几种方法:加速溶剂提取法,微波加热提取法,超临界流体提取法(sFE);固相微提取法(SPME)。
样品前处理包括待测物的提取、净化和浓缩。提取是指使用适当溶剂(常用丙酮或乙腈),将待测物连同样品基质从固态样品中转移到易于净化和分析的液态;净化是指将待测物与提取液中的干扰物质分离。在现代残留农药检测中,提取、净化可一步完成,提取、净化的界限已十分模糊。
一、提取方法
1.索氏提取法
索氏提取法应用将近一百年,加上用分液漏斗的液-液分配技术,长期以来是分析家用来从样品基体中分离靶标分析物的主要技术,将样本放在索氏提取器套管中,在圆底烧瓶中加入提取剂,加热连续提取数小时。此法为经典提取法,也叫完全提取法,是国际上的标准方法,提取效果好,但缺点是用时过长,干扰物质较多,使用过多的有机溶剂。为了减少有机溶剂的用量,缩短提取过程,提取技术朝着小型化、少溶剂的方向发展。近年来出现了一些值得推荐的新的提取技术,如加速溶剂提取法AsE)、微波加热提取法(MAE)、超临界流体提取法(SFE)等,这些方法克服了索氏提取法时间长、有机溶剂用量大的缺点。固相微提取法(SPME)是一种无溶剂、快速而简便的提取技术。
2.加速溶剂提取法
1995年,Richter等提出了一种全新的萃取方法一加速溶剂萃取磨迟法(AsE)。该方法是高温(50~200℃)及加压(10.3~13.7MPa)条件下的溶剂提取法。温度高于100℃的溶剂穿透力强且溶解力大,加快分析物从基体解析进入溶剂;加压使溶剂保持液态,用少量溶剂可快速提取固体样品中的分析物。
样品密封在高压不锈钢提取仓内,经过起始的加热过程,样品在静态下与加压的溶剂相互作用一段时间,然后用压缩氮气将提取液吹扫至收集瓶中,每个样品的提取全过程约15min,图6—1是AsE快速溶剂萃取仪示意图。使用快速溶剂萃取仪AsE在数分钟内即可完成常规萃取方法数小时所做的工作,与索氏萃取和微波萃取相比,AsE只需极短的时间,使用最低的溶剂量就可满足各种萃取需求。
现在已有商品ASE自动化提取系统州好,如I)ionex200,玻璃样品提取瓶密封于不锈钢圆筒内,24位样品传输架,可以连续自动提取24个样品。提取瓶容量有3种:11mL、22mL、33mL,收集瓶有40mL及60mL两种,每个提取瓶可设置多次提取程序。由于加速溶剂提取法具有以上突出优点,被美国环保局(EPA)推荐为标准方法。
用此系统提取食品中含有的19种有机磷农药,o.1mg/kg,样品5g,提取温度1。0℃,压力10.3MPa,预热5min,静态提取5min,用溶剂快速冲洗样品,氮气吹扫收集全部提取液,加上系统清洗液,总计每个样品用溶剂册游铅50mL,耗时20min,过程全部自动化,除甲胺磷和乙酰甲胺磷外,其他17种有机磷农药回收率在80%~90%的范围内,相对标准偏差小于10%。Adou等[M]利用ASE提取,用GC对蔬菜水果中19种农药进行了分析。AsE提取溶剂的选择与索氏提取法一样,提取液同样也需净化才能检测,其作用只是减少提取溶剂用量,缩短提取时间。
3.微波加热提取法
自1986年美国科学家Ganzler等["’首次报道用微波能提取被污染土壤中的有机物以来,微波加热提取法就受到了研究者的注意。微波能是一种非离子辐射,它使分子中的离子发生位移和偶极矩,其中有机物受微波辐射使其分子排列成行,又迅速恢复到无序状态,这种反复进行的分子运动,使样品迅速加热。微波穿透力强,能深入基体内部,辐射能迅速传遍整个样品,而不使表面过热。内部的分子运动使溶剂与分析物充分作用,加速了提取过程,图6—2是微波萃取系统。微波快速溶剂萃取系统可以在15min内萃取12个样品。如MSP一100型微波提取器,同时容纳12个样品,样品提取仓内衬聚四氟乙烯,容量100mL,样品和溶剂置于此密封加压仓内,用微波加热,一般用30~40mL溶剂提取5~20min,加压时提取温度可以高于溶剂的沸点,提取完成后,冷却至室温(约30min),提取液需净化后分析。
微波提取法的最佳回收率决定于样品基体、靶标农药、提取温度和溶剂。与其他溶剂提取法比较,样品基体的影响较大,而取样量减少并不降低方法的精密度,并且在相同条件下可提取多个样品,增加了样品的流通量。因此针对不同的样品和农药,要预先进行微波参数的优化。Pylypiw等[墙]研究了微波加热提取法对多种田间样品的多残留检测,比较了不同温度、不同提取时间下的提取结果,认为多残留检测最佳条件为:电能置于50%处,温度100℃,提取时间10min,对于百菌清(chlorothalonil)则温度在80℃较好。silgonerL¨j研究表明,用异辛烷、正己烷、丙酮、苯和丙酮(2:1)、甲醇、乙酸、甲醇、正己烷、异辛烷、乙腈等作溶剂,在土壤或沉积物有一定湿度的条件下,微波萃取方法仅用3min,就可获得与soxhlet提取法用6h才能取得的相同的有机氯农药残留回收率。影响密闭容器微波萃取不同样品中农药残留的条件除了溶剂外,还有萃取温度、萃取时间和溶剂体积等条件,经过实验选择最佳萃取条件,萃取土壤中12种农残的回收率结果与常规EPA法进行对照,结果表明微波萃取10min的回收率和精密度均好于EPA规定的索氏法。
4.超临界流体提取法(sFE)
前述的加速溶剂提取法和微波加热提取法采用的仍然是有机溶剂作为提取溶剂,只是加上辅助能源来改善提取。而超临界流体提取法则完全用另一种性质的提取溶剂,即超临界状态下的流体作为提取剂,其中又以超临界二氧化碳应用最普遍。二氧化碳的临界温度31℃,临界压力7.4MPa,此条件比较容易达到。超临界流体黏度小、扩散快,溶质在超I临界流体中扩散速度比液体中快得多,提取过程的质量转移快,因而提取速度快、时间短。改变温度、压力或添加少量的有机溶剂,可以改变超临界流体提取剂的溶解力,这一点优于有机溶剂提取法。解除压力后,二氧化碳成为气态,容易与提取物分离,用少量有机溶剂收集分析物,然后灵活地选择检测方法。二氧化碳惰性、无毒、价格比较便宜是其优势,但只适合于提取非极性及中等极性的分析物(农药)。目前还在寻求其他提取剂,如氯仿是很有吸引力的,它对极性分析物(农药)的溶解力强,可以从含脂肪的样品基体中选择提取靶标农药,图6—3是超临界流体萃取系统与基本工艺流程。
超临界流体可依据具体情况选用COz、水、合成甲醇等介质,制冷剂可选用防冻液或乙二醇等。超临界流体萃取系统包括萃取反应器、介质冷冻/加热循环水浴、介质冷凝液化器、分离器、BPR压力控制、高压计量泵、超高温加热器以及附属空气驱动泵、溶剂泵等。
近来还发现在超临界二氧化碳中添加30%的氮,在80℃及55.2MPa下提取,有机氯及有机磷农药的回收率提高,而脂肪的提取量在可以耐受的水平。
sFE对固体样品是一种好的提取方法,但是需要较贵的超临界流体提取仪才能完成,自动化连续式超临界流体提取仪可以连续提取44个样品,平行式提取仪一般可同时提取6个样品,与索氏法相比,其精密度较好。由于样品基体和农药种类不同,条件选择不一致,对以上3种方法及索氏法而言,各有各的优点,可根据具体分析物的情况定提取方案。
5.固相微提取法(SPME)
水或水溶液中农药的提取,过去一直采用大分液漏斗的液一液分配提取法,费时费力。用固相提取法,大量水样(1L)流过吸附柱,农药吸附在柱上,然后用少量有机溶剂淋洗农药,比液一液分配法已经简化很多。微型固相提取法是固相提取法中的新成员,1989年由加拿大的Belardi和Pawliszyn[21]首先开发,在细石英纤维(170/zm)上涂布一层固定相(吸附剂),将纤维插入水溶液样品内,水中分析物被分配到固定相上,取出纤维插入气相色谱仪进行分析。微型固相提取法的原理是吸附和热解吸,取样、提取浓缩、进样是一个步骤,全过程无需溶剂,是分析方法上的重大突破。进样不用溶剂,改善了色谱分离效率,纤维可重复使用多次,十分经济。图6—4是自动固相微萃取仪的示意图,固相微萃取特别适用于在进行色谱和质谱分析时,对样品进行微萃取处理。
常用的固定相为聚二甲基硅氧烷(potydimethylsiloxane),涂布厚度10m,用于提取非极性有机物;聚丙烯酸酯(polyac:ylate)涂布厚度85>m,用于提取极性有机物,有现成的商品供应。sPME—Gc—Ms的检测限可以达到飞克级,分析物转移的随机误差来源少,因而精密度很好,一般RSD小于5%。
Beltran[22]等用SPME—GC—NPD检测环境水中12种有机磷农药(ng/mL)残留,纤维插入3mL水样中(含15%氯化钠)室温下搅拌浸提60mi‘n,然后将纤维插入GC进样口,聚二甲基硅氧烷270℃,聚丙烯酸酯250℃下解吸并分析,该方法的检测限0.01~O.2ng/mL,RSD小于5%。Jacks()n用SPME—GC—PDECD快速测量水中有机氯农药,浸取2min(非平衡提取),全部分析时间只需10min。
如用顶空取样法,SPME可用于土壤和泥浆样品,加热样品,分析物挥发进入顶空,纤维从顶空取样。目前SPME主要还是用于水或比较纯净的水溶液样品,SPME简便、经济、快速并容易自动化,是一种完全不用溶剂的提取技术,它使样品前处理不再成为方法的瓶颈。
常用的提取方法还有以下几种。
(1)浸渍、漂洗法将样品浸渍在提取液中,或用提取液漂洗样品。此法对附着在样品表面的农药有很好的提取效果12引。
(2)匀浆法将样品放在匀浆杯(捣碎杯)中,加入提取剂,快速匀浆(捣碎)几分钟。此法简便,快速,效果好,普遍采用。
(3)消化法样品中加入消化剂,加热使样品消化,再用溶剂将待测农药提取出。此法多用于不易匀浆,不易捣碎的动物组织样品。
(4)振荡法在盛有样品的容器中加入提取剂,振荡数小时。此法简便并且提取效果好,较普遍采用。
(5)超声波提取法样品经粉碎或匀浆捣碎后,加入提取剂,在超声波仪中提取一定时问,此法现已普遍采用。
(6)吸附法去活吸附剂(硅胶、弗罗里硅土等)混合装柱,再用适当的溶剂将农药淋洗下来,适用于动物组织样品的提取。
问:设计构建一个载体,将目的基因在植物根系表达并向根细胞外分泌.
先给你贴个东西你先看一下希望对你有帮助将特定的外源基因构建在植物表达载体中并转入受体植物,并不是植物遗传转化的最终目的.理想的转基因植物往往需要外源基因在特定部位和特定时间内高水平表达,产生人们期望的表型性状.然而,近二十年的发展历史却表明,外源基因在受体植物内往往会出现表达效率低、表达产物不稳定甚至基因失活或沉默等不良现象,导致转基因植物无法投入实际应用.另外,转基因植物的安全性问题已在许多国家引起人们的关注,例如,转基因有可能随花粉扩散,抗生素筛选标记基因有可能使临床上的某些抗生素失去作用等等.以上问题的出现使得植物基因工程这一高新技术正处于一种前所未有的困扰时期.针对这些问题,近几年人们对植物转基因技术进行了多方面的探索和改进,植物表达载体的改进和优化就是其中最重要的一项内容,本州闷文就已经取得的进展进行综述.
1启动子的选用和改造
外源基因表达量不足往往是得不到理想的转基因植物的重要原因.由于启动子在决定基因表达方面起关键作用,因此,选择合适的植物启动子和改进其活性是增强外源基因表达首先要考虑的问题.
目前在植物表达载体中广泛应用的启动子是组成型启动子,例如,绝大多数双子叶转基因植物均使用CaMV35S启动子,单子叶转基因植物主要使用来自玉米的Ubiquitin启动子和来自水稻的Actinl启动子.在这些组成型表达启动子的控制下,外源基因在转基因植物的所有部位和所有的发育阶段都会表达.然而,外源基因在受体植物内持续、高效的表达不但造成浪费,往往还会引起植物的形态发生改变,影响植物的生长发育.为了使外源基因在植物体内有效发挥作用,同时又可减少对植物的不利影响,目前人们对特异表达启动子的研究和应用越来越重视.已发现的特异性启动子主要包括器官特异性启动子和诱导特异性启动子.例如,种子特异性启动子、果实特异性启动子、叶肉细胞特异性启动子、根特异性启动子、损伤诱导特异性启动子、化学诱导特异性启动子、光诱导特异性启动子、热激诱导特异性启动子等.这些特异性启动子的克隆和应用为在植物中特异性地表达外源基因奠定了基础.例如,瑞士CIBA-GEIGY公司使用PR-IA启动子控制转基因烟草中Bt毒蛋白基因的表达,由于该启动子可受水杨酸及其衍生物诱导,通过喷酒廉价、无公害的化学物质,诱导抗虫基因在虫害重发生季节表达,显然是一个十分有效的途径.
在植物转基因研究中,使用天然的启动子往往不能取得令人满意的结果,尤其是在进行特异表达和诱导表达时,表达水平大多不够理想.对现有启动子进行改造,构建复合式启动子将是十分重要的途径.例如,Ni等人将章鱼碱合成酶基因启动子的转录激活区与甘露碱合成酶基因启动子构成了复合启动子,GUS表达结果表示:改造后的启动子活性比35S启动子明显提高.吴瑞等人将操作诱导型的PI-II基因启动子与水稻Actinl基因内含子1进行组合,新型启动子的表达活性提高了近10倍(专利).在植物基因工程研究中,这些人工组建的启动子发挥了重要作用.
2增强翻译效率
为了增强外源基因的翻译效率,构建载体时一般要对基因进行修饰,主要考虑三方面内容:
2.1添加5‘-3‘-非翻册顷弯译序列
许多实验已经发现,真核基因的5‘-3‘-非翻译序列(UTR)对基因的正常表达是非常必要的,该区段的缺失常会导致mRNA的稳定性和翻译水平显著下降.例如,在烟草花叶病毒(TMV)的126kDa蛋白基因翻译起始位点上游,有一个由68bp核苷酸组成的Ω元件,这一元件为核糖体提供了新的结合位点,能使Gus基因的翻译活性提高数十倍.目前已有许多载体乎渣中外源基因的5‘-端添加了Ω翻译增强序列.Ingelbrecht等曾对多种基因的3‘-端序列进行过研究,发现章鱼碱合成酶基因的3‘-端序列能使NPTII基因的瞬间表达提高20倍以上.另外,不同基因的3‘-端序列增进基因表达的效率有所不同,例如,rbcS3‘-端序列对基因表达的促进作用比查尔酮合酶基因的3‘-端序列高60倍.
2.2优化起始密码周边序列
虽然起始密码子在生物界是通用的,然而,从不同生物来源的基因各有其特殊的起始密码周边序列.例如,植物起始密码子周边序列的典型特征是AACCAUGC,动物起始密码子周边序列为CACCAUG,原核生物的则与二者差别较大.Kozak详细研究过起始密码子ATG周边碱基定点突变后对转录和翻译所造成的影响,并总结出在真核生物中,起始密码子周边序列为ACCATGG时转录和翻译效率最高,特别是-3位的A对翻译效率非常重要.该序列被后人称为Kozak序列,并被应用于表达载体的构建中.例如,有一个细菌的几丁质酶基因,原来的起始密码周边序列为UUUAUGG,当被修饰为ACCAUGG,其在烟草中的表达水平提高了8倍.因此,利用非植物来源的基因构建表达载体时,应根据植物起始密码子周边序列的特征加以修饰改造.
2.3对基因编码区加以改造
如果外源基因是来自于原核生物,由于表达机制的差异,这些基因在植物体内往往表达水平很低,例如,来自于苏云金芽孢杆菌的野生型杀虫蛋白基因在植物中的表达量非常低,研究发现这是由于原核基因与植物基因的差异造成了mRNA稳定性下降.美国Monsanto公司Perlak等人在不改变毒蛋白氨基酸序列的前提下,对杀虫蛋白基因进行了改造,选用植物偏爱的密码子,增加了GC含量,去除原序列下影响mRNA稳定的元件,结果在转基因植株中毒蛋白的表达量增加了30~100倍,获得了明显的抗虫效果.
3消除位置效应
当外源基因被移人受体植物中之后,它在不同的转基因植株中的表达水平往往有很大差异.这主要是由于外源基因在受体植物的基因组内插入位点不同造成的.这就是所谓的"位置效应".为了消除位置效应,使外源基因都能够整合在植物基因组的转录活跃区,在目前的表达载体构建策略中通常会考虑到核基质结合区以及定点整合技术的应用.
核基质结合区(matrixassociationregion,MAR)是存在于真核细胞染色质中的一段与核基质特异结合的DNA序列.一般认为,MAR序列位于转录活跃的DNA环状结构哉的边界,其功能是造成一种分割作用,使每个转录单元保持相对的独立性,免受周围染色质的影响.有关研究表明,将MAR置于目的基因的两侧,构建成包含MAR-gene-MAR结构的植物表达载体,用于遗传转化,能明显提高目的基因的表达水平,降低不同转基因植株之间目的基因表达水平的差异,减少位置效应.例如,Allen等人研究了异源MAR(来自酵母)和同源MAR(来自烟草)对Gus基因在烟草中表达的影响,发现酵母的MAR能使转基因表达水平平均提高12倍,而烟草本身的MAR能使转基因的表达水平平均提高60倍.使用来源于鸡溶菌酶基因的MAR也可起到同样作用.
另一可行的途径是采用定点整合技术,这一技术的主要原理是,当转化载体含有与寄主染色体同源的DN***段时,外源基因可以通过同源重组定点整合于染色体的特定部位.实际操作时首先要分离染色体转录活性区域的DN***段,然后构建植物表达载体.在微生物的遗传操作中,同源重组定点整合已成为一项常规技术,在动物中外源基因的定点整合已获得成功,而在植物中除了叶绿体表达载体可实现定点整合以外,细胞核转化中还很少有成功的报道.
4构建叶绿体表达载体
为了克服细胞核转化中经常出现的外源基因表达效率低,位置效应及由于核基因随花粉扩散而带来的不安全性等问题,近几年出现的一种新兴的遗传转化技术--叶绿体转化,正以它的优越性和发展前景日益为人们所认识并受到重视.到目前为止,已在烟草、水稻、拟南芥、马铃薯和油菜(侯丙凯等,等发表)5种植物中相继实现了叶绿体转化,使得这一转化技术开始成为植物基因工程中新的生长点.
由于目前多种植物的叶绿体基因组全序列已被测定,这就为外源基因通过同源重组机制定点整合进叶绿体基因组奠定了基础,目前构建的叶绿体表达载体基本上都属于定点整合载体.构建叶绿体表达载体基本上都属于定点事例载体.构建叶绿体表达载体时,一般都在外源基因表达盒的两侧各连接一段叶绿体的DNA序列,称为同源重组片段或定位片段(Targetingfragment).当载体被导入叶绿体后,通过这两个片段与叶绿体基因组上的相同片段发生同源重组,就可能将外源基因整合到叶绿体基因组的特定位点.在以作物改良为目的的叶绿体转化中,要求同源重组发生以后,外源基因的插入既不引起叶绿体基因原有序列丢失,又不致于破坏插入点处原有基因的功能.为满足这一要求,已有的工作都选用了相邻的两个基因作为同源重组片段,例如rbcL/accD,16StrnV/rpsl2rps7,psbA/trnK,rps7/ndhB.当同源重组发生以后,外源基因定点插入在两个相邻基因的间隔区,保证了原有基因的功能不受影响.最近,Daniel等利用烟草叶绿体基因trnA和trnI作为同源重组片段,构建了一种通用载体(universalvector).由于trnA和trnI的DNA序列在高等植物中是高度保守的,作者认为这种载体可用于多种不同植物的叶绿体转化.如果这种载体的通用性得到证实,那么这项工作无疑为构建方便而实用的新型叶绿体表达载体提供了一个好的思路.
由于叶绿体基因组的高拷贝性,定点整合进叶绿体基因组的外源基因往往会得到高效率表达,例如McBride等人首次将BtCryIA(c)毒素基因转入烟草叶绿体,Bt毒素蛋白的表达量高达叶子总蛋白的3%~5%,而通常的核转化技术只能达到0.001%~0.6%.最近,Kota等将BtCry2Aa2蛋白基因转入烟草转入烟草叶绿体,也发现毒蛋白在烟草叶子中的表达量很高,占可溶性蛋白的2%~3%,比细胞核转化高出20~30倍,转基因烟草不仅能抗敏感昆虫,而且能够百分之百地杀死那些产生了高抗性的昆虫.Staub等最近报道,将人的生长激素基因转入烟草叶绿体,其表达量竟高达叶片总蛋白的7%,比细胞核转化高出300倍.这些实验充分说明,叶绿体表达载体的构建和转化,是实现外源基因高效表达的重要途径之一.
5定位信号的应用
上述几种载体优化策略主要目的是提高外源基因的转录和翻译效率,然而,高水平表达的外源蛋白能否在植物细胞内稳定存在以及积累量的多少是植物遗传转化中需要考虑的另一重要问题.
近几年的研究发现,如果某些外源基因连接上适当的定位信号序列,使外源蛋白产生后定向运输到细胞内的特定部位,例如:叶绿体、内质网、液泡等,则可明显提高外源蛋白的稳定性和累积量.这是因为内质网等特定区域为某些外源蛋白提供了一个相对稳定的内环境,有效防止了外源蛋白的降解.例如,Wong等将拟南芥rbcS亚基的转运肽序列连接于杀虫蛋白基因之前,发现杀虫蛋白能够特异性地积累在转基因烟草的叶绿体内,外源蛋白总的积累量比对照提高了10~20倍.最近,叶梁、宋艳茹等也将rbcS亚基的转运肽序列连接于PHB合成相关基因之前,试图使基因表达产物在转基因油菜种子的质体中积累,从而提高外源蛋白含量.另外,Wandelt等和Schouten等将内质网定位序列(四肽KDEL的编码序列)与外源蛋白基因相连接,发现外源蛋白在转基因植物中的含量有了显著提高.显然,定位信号对于促进蛋白质积累有积极作用,但同一种定位信号是否适用于所有的蛋白还有待于进一步确定.
6内含子在增强基因表达方面的应用
内含子增强基因表达的作用最初是由Callis等在转基因玉米中发现的,玉米乙醇脱氢酶基因(Adhl)的第一个内含子(intron1)对外源基因表达有明显增强作用,该基因的其他内含子(例如intron8,intron9)也有一定的增强作用.后来,Vasil等也发现玉米的果糖合成酶基因的第一个内含子能使CAT表达水平提高10倍.水稻肌动蛋白基因的第三个内含子也能使报道基因的表达水平提高2~6倍.至今对内含子增强基因表达的机制不不清楚,但一般认为可能是内含子的存在增强了mRNA的加工效率和mRNA稳定性.Tanaka等人的多项研究表明,内含子对基因表达的增强作用主要发生在单子叶植物,在双子叶植物中不明显.
由于内含子对基因表达有增强作用,Mcelroy等在构建单子叶植物表达载体时,特意将水稻的肌动蛋白基因的第一个内含子保留在该基因启动子的下游.同样,Christensen等在构建载体时将玉米Ubiquitin基因的第一个内含子置于启动子下游,以增强外源基因在单子叶植物中的表达.然而,有研究指出,特定内含子对基因表达的促进作用取决于启动子强度、细胞类型、目的基因序列等多种因素,甚至有时会取决于内含子在载体上的位置.例如,玉米Adhl基因的内含子9置于Gus基因的5‘端,在CaMV35S启动子调控下,Gus基因的表达未见增强;当把内含子置于Gus基因3端,在同样的启动子控制下,Gus基因的表达水平却增加了大约3倍.由此可见,内含子对基因表达的作用机制可能是很复杂的,如何利用内含子构建高效植物表达载体,目前还缺乏一个固定的模式,值得进一步探讨.
7多基因策略
迄今为止,多数的遗传转化研究都是将单一的外源基因转入受体植物.但有时由于单基因表达强度不够或作用机制单一,尚不能获得理想的转基因植物.如果把两个或两个以上的能起协同作用的基因同时转入植物,将会获得比单基因转化更为理想的结果.这一策略在培育抗病、抗虫等抗逆性转基因植物方面已得到应用.例如,根据抗虫基因的抗虫谱及作用机制的不同,可选择两个功能互补的基因进行载体构建,并通过一定方式将两个抗虫基因同时转入一个植物中去.王伟等将外源凝集素基因和蛋白酶抑制剂基因同时转入棉花,得到了含双价抗虫基因的转化植株.Barton等将Bt杀虫蛋白基因和蝎毒素基因同时转入烟草,其抗虫性和防止害虫产生抗性的能力大为提高(专利).在抗病方面,本实验室蓝海燕等构建了包含β-1,3-葡聚糖酶基因及几丁质酶基因的双价植物表达载体,并将其导入油菜和棉花,结果表明,转基因植株均产生了明显的抗病性.最近,冯道荣、李宝健等将2~3个抗真菌病基因和hpt基因连在一个载体上,两个抗虫基因与bar基因连在另一个载体上,用基因枪将它们共同导入水稻植株中,结果表明,70%的R.代植株含有导入的全部外源基因(6~7个),且导入的多个外源基因趋向于整合在基因组的一个或两个位点.
一般常规的转化,尚不能将大于25kb的外源DN***段导入植物细胞.而一些功能相关的基因,比如植物中的数量性状基因、抗病基因等,大多成"基因簇"的形式存在.如果将某些大于100kb的大片段DNA,如植物染色体中自然存在的基因簇或并不相连锁的一系列外源基因导入植物基因组的同一位点,那么将有可能出现由多基因控制的优良性状或产生广谱的抗虫性、抗病性等,还可以赋予受体细胞一种全新的代谢途径,产生新的生物分子.不仅如此,大片段基因群或基因簇的同步插入还可以在一定程度上克服转基因带来的位置效应,减少基因沉默等不良现象的发生.最近,美国的Hamilton和中国的刘耀光分别开发出了新一代载体系统,即具有克隆大片段DNA和借助于农杆菌介导直接将其转化植物的BIBAC和TAC.这两种载体不仅可以加速基因的图位克隆,而且对于实现多基因控制的品种改良也会有潜在的应用价值.目前,关于BIBAC和TAC载体在多基因转化方面的应用研究还刚刚开始.
8筛选标记基因的利用和删除
筛选标记基因是指在遗传转化中能够使转化细胞(或个体)从众多的非转化细胞中筛选出来的标记基因.它们通常可以使转基因细胞产生对某种选择剂具有抗性的产物,从而使转基因细胞在添加这种选择的培养基上正常生长,而非转基因细胞由于缺乏抗性则表现出对此选择剂的敏感性,不能生长、发育和分化.在构建载体时,筛选标记基因连接在目的基因一旁,两者各有自己的基因调控序列(如启动子、终止子等).目前常用的筛选标记基因主要有两大类:抗生素抗性酶基因和除草剂抗性酶基因.前者可产生对某种抗生素的抗性,后者可产生对除草剂的抗性.使用最多的抗生素抗性酶基因包括NPTII基因(产生新霉素磷酸转移酶,抗卡那霉素)、HPT基因(产生潮霉素磷酸转移酶,抗潮霉素)和Gent基因(抗庆大霉素)等.常用的抗除草剂基因包括EPSP基因(产生5-烯醇式丙酮酸莽草酸-3-磷酸合酶,抗草甘磷)、GOX基因(产生草甘膦氧化酶、降解草甘膦)、bar基因(产生PPT乙酰转移酶,抗Bialaphos或glufosinate)等.
上面这些当中1、2、3、5、6都是值得注意的,特别是5,因为你要向细胞外分泌.骨架载体可以选择PBI121,然后你可以在上面改动基因型.
后面的就是克隆的步骤了,相对简单.
1首先获得目的基因加酶切位点,连入改好的载体中.
2将质粒转入大肠杆菌DH5a扩增
3将扩增好的质粒转入植物细胞内进行表达
4收集根细胞外培养基检测是否有该蛋白的表达和分泌.
至于改造载体那几个步骤要是答题的话简单说说就可以了,毕竟如果真的做出一个好载体都可以自己开公司了.
问:百菌清的简介
期待看到有用的回答!再看看别人怎么说的。
上一篇:梓木是什么木,梓木是什么木材? 下一篇:甘蔗梢腐病的特效药(兰花茎腐病特效药)
热门作者: 农业播报侠 种子小百科 农产新干线 农情领航灯 绿色农业防治通 种子故事